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ABSTRACT 
Based on a lumped mass model and an incremental iteration method, an efficient simultaneous iteration 
procedure is developed for the finite element solution of the enthalpy model. This procedure uses Gauss 
elimination to solve the resulting algebraic equation system. A one-point quadrature program based on 
the isoparametric quadrilateral element is incorporated for the calculation of the heat conductance matrix, 
leading to a significant reduction of the computation time. 
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INTRODUCTION 

The enthalpy model proposed by Shamsundar and Sparrow1 is one of the most popular 
approaches to the solution of phase change heat conduction problems. In this model, both 
enthalpy and temperature are included in the field equation as dependent variables; therefore, 
n equations emerge containing 2n dependent variables in the final discrete algebraic equations. 
Gauss-Siedel iteration, or an equivalent non-simultaneous iteration procedure, is required to 
solve the algebraic equations along with the equations of state. As such schemes provide slow 
convergence, especially due to the phase change non-linearity, a large number of iterations are 
required in each time step, particularly for two and three dimensional problems. 

Enthalpy concepts have been applied for phase change problems since 1974 (please see the 
pioneering paper by Comini et al.2 and the improved version of their method3,4,12) but not in 
the way Shamsundar and Sparrow have proposed. The procedures developed in references 2-4, 
12 have been well established and are effective in solving phase change problems. However, 
these procedures are, in fact, different combinations of the enthalpy concept with the equivalent 
heat capacity method. 

The enthalpy model of Shamsundar and Sparrow has always been associated with finite 
difference rather than finite element methods. It is partly due to, in the authors' opinion, the 
feature of the enthalpy model which makes the solution procedure of the finite element method 
both inefficient and a little difficult to implement since most of the existing finite element programs 
are equipped with direct solvers. 
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In this paper the finite element method is used to solve the enthalpy model. A new efficient 
simultaneous iteration procedure is developed to solve the final discrete matrix equation. This 
procedure uses Gauss elimination to solve the algebraic equations and is easy to implement 
with any existing finite element heat conduction computer program with only a little modification. 
The isoparametric bilinear quadrilateral element is employed and a one-point quadrature 
algorithm5'6 is incorporated into the calculation of the thermal conductance matrices, reducing 
greatly the computation time. 

MATHEMATICAL FORMULATION 

The mathematical description of the enthalpy model for phase change heat conduction problems, 
following Shamsundar and Sparrow1, is as follows: 

in which p is density, H enthalpy per unit mass, t time, k thermal conductivity, T temperature, 
x space coordinate, Ω solution domain, R3 three-dimensional space, and: 

in which (and in subsequent equations) subscripts s and l represent solid and liquid phases, 
respectively; superscript * denotes the state of saturation 

Equation (1) is coupled with the following equations of state: 

where Tm is the discrete melting temperature and c is the specific heat. 

FINITE ELEMENT DISCRETIZATION 

The spacewise discretization of (1) can be accomplished using the standard Galerkin's method7. 
Multiplying (1) by a weight function Wl and integrating it over the solution domain Ω, we have: 

Integration by parts results in: 

After making use of Green's theorem, in order to obtain the boundary integral of the domain, 
we have: 

in which Γ is the boundary of the solution domain and n is the outward normal of the boundary. 
The boundary integral vanishes in the case of the Dirichlet boundary condition and for zero 
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heat flux, k▿T · n = 0, at the boundaries. For the Robin boundary condition (boundary condition 
of the third kind), the boundary integral is: 

in which h is the convection heat transfer coefficient and Tf is the ambient temperature. 
Let the unknown functions H and T be approximated throughout the solution domain at 

any time t by: 

and 

where NI (I = 1,2 m; m is the nodal number of each element) are the usual shape functions 
defined piecewise element by element; Hl and Tl the nodal parameters. Substituting (8) and (9) 
into (6) and then replacing the weight function Wl by the shape function NI, we obtain the 
following matrix differential equation: 

in which [M(T)] is the heat capacity matrix, [K(T)] the conductance matrix and {F(T)} the 
heat load vector. The superposed dot ' · ' denotes differentiation with respect to time. Typical 
matrix elements are: 

In the above equations, standard indicial notation is used with repeated subscripts implying 
summation; Ωe is the element region and Γe refers only to elements with external boundaries on 
which the third kind boundary condition is specified. 

TIME DISCRETIZATION 

Discretization of the time derivative in (10) is most often achieved with a finite difference 
technique. Although many time-stepping schemes are available8,9, the most popular ones are 
the two-time-level methods. In this work, a predictor-corrector scheme10,11 is used. 

Predictor: 

Corrector: 

Correspondingly, 
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In the preceding equations, subscript n denotes the nth time step, superscript i designates the 
ith iteration, a is an integral parameter which controls the accuracy and the stability of the time 
integration, α = 0 ~ 1 and ∆t is the time step of time integration. 

Substitution of (17) into (10) leads to: 

Since the following relationship exists between the enthalpy and temperature for heat 
conduction without phase change: 

we can obtain: 

if the lumped mass model7,12 is adopted. Here [C] is the heat capacity matrix and is diagonal. 
Equation (20) can easily be transformed into: 

since [C] is a diagonal matrix. 
Equation (21) is not valid if a phase change takes place in the heat conduction processed. This 

is due to the fact that the temperature rates of those nodes in which a phase change is taking 
place are equal to zero but the enthalpy rates are not. However, it can still hold true if the 
conductance matrix on the left hand side of (18), which will consist of the global matrix of the 
final discrete equation system, is modified such that all the elements in column I are set equal 
to zero if phase change is taking place in node l. 

As a further explanation, take an element (bilinear quadrilateral element used in this study), 
for example, if there is no phase change at all nodes of the element, the following equation is valid: 

in which subscript e denotes the element and subscripts I, J = 1, 2, 3, 4; while if phase change 
is taking place, for example, at node 1, there is = 0, and then, 

(23) 
in which is the modified element conductance matrix. 
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Substitution of (21) into (18) yields: 

where is the modified conductance matrix. 
Since (24) is highly nonlinear, an incremental iteration technique7 is employed to effect a 

solution. As a result, (24) becomes: 

where, 

and is the increment of in each iteration. 
Originally, the conductance matrix [K] is symmetrical. A modification, such as that mentioned 

above, as well as the multiplication of [K#][C] - 1 makes asymmetrical. This is illustrated 
at the element level by the following equation: 

The asymmetrical matrix is a drawback of the procedure. However, can be made symmetric 
if the modified conductance matrix is further modified such that all the elements in row i in 

are also taken to be zero if a phase change is taking place at node I, and the two sides 
of (25) are multiplied by the same matrix [C] - 1 . The symmetrization process is illustrated at 
the element level by the following equation: 

where is the further modified element conductance matrix. This further modification 
does not affect the final results as when the iteration converges in (25), = {0}, with the 
result This is attributed to the selection of the increment of enthalpy rate as the 
variable to be solved. 

As will be seen in the subsequent numerical examples, the symmetrization of the global matrix 
in the final discrete matrix equation, (25), may increase the iteration number in each time step, 
but can lead to reductions in the memory requirement and in the computational effort in equation 
solving, with the consequence of a probable reduction in the total computation time, especially 
for problems requiring a great number of nodes. Since [C] is diagonal, calculation of [C]-1 

and the multiplication of [ C ] - 1 require only a small computational effort. 
After further modification of the conductance matrix and multiplication of [C]-1 at the two 

sides of (25), we have: 

where 
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Gauss elimination is used to solve (30). The solution steps are as follows: 
(1) With the initial temperature distribution, calculate the initial enthalpy field with (3). 
(2) At the beginning of each time step, for i = 0, calculate according to (14), and then 

set 
(3) With the two starting vectors, {AH} is obtained by solving (30). 
(4) Update using (15). 
(4) If the convergence condition is met (here, we compare the Euclidean norms of and 

{R} to some selected constants TOL1 and TOL2), set and 

as starting vectors, go to step (3) to 
undertake the next iteration. 

It should be noted that extension of the procedure described above to other time-stepping scheme 
(e.g. three-time-level scheme) is direct. 

ONE-POINT QUADRATURE 

Because of the continuous changes of the thermal conductivity during the phase change process, 
the element conductance matrices have to be calculated at each iteration in every time step. 
This calculation occupies a large portion of the total computational work. For the isoparametric 
bilinear quadrilateral element used in this study, the calculation of the element conductance 
matrices is performed by numerical quadrature and a 2 x 2 Gauss quadrature is required. This 
is very time-consuming. In order to speed up the computation, a one-point quadrature 
algorithm5,6 is incorporated into the procedure. 

The shape functions for a bilinear quadrilateral element are written in a reference plane ξ, η 
in the form 

where ξI, ηI, are the ξ, η coordinates of node I. If one-point quadrature is used, the integrals in 
(11)—(13) can be computed by simply evaluating the integrands at ξ = 0, η = 0. 

Utilization of one-point quadrature in the calculation of the conductance matrix may result 
in an element matrix which contains a spurious singular mode. For certain boundary conditions, 
this mode leads to singularity of the assembled global matrix. This drawback can be circumvented 
by adding a stabilization matrix to the element conductance matrix from one-point quadrature. 

The heat conductance matrix by the stabilized one-point quadrature algorithm is as follows 
(for detailed information, refer to Reference 5): 

where is the element matrix by one-point quadrature: 

where 

Here ,x and ,y designate differentiation with respect to coordinates x and y, respectively. Further: 
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and 

The stabilization matrix, is given by: 

where 

where ε is a parameter which controls the accuracy of the integration. The fully integrated 
conductivity is given by ε = 1. 

As will be demonstrated in the following section, the utilization of this stabilized one-point 
quadrature results in a significant reduction of computing time. 

EXAMPLE CALCULATIONS 

Accuracy tests 
To test the accuracy of the aforementioned procedure, two illustrative problems were 

computed. 

Solidification in a half-space 
A liquid at a uniform temperature 10°C which is above its freezing point (0°C) is confined to 

a half-space x > 0. At time t = 0 the boundary surface at x = 0, is lowered to a temperature of 
—20°C and maintained at this temperature for t > 0. The thermophysical properties are as 
follows: 

ks = 2.22 W/m·K, kl=0.556 W/m·K, cs = 1762 J/kg·K, 
c,=4226 J/kg·K, p = 1000 kg/m3, λ = 338000 J/kg 

where λ represents the latent heat. 
Two-dimensional elements are used to solve this problem although it is physically 

one-dimensional. The finite element mesh is shown in Figure 1. The length of the computed 
space, BC, is taken to be 1 m. Computations were carried out using 20 elements with a time 
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step of 200 seconds, 40 elements with a time step of 100 seconds, 40 elements with a time step 
of 10 seconds, as well as 80 elements with a time step of 10 seconds, respectively. 

In all the computations for this problem and the following test problems, the integration 
parameter, α, is taken to be 0.5 and the convergence criteria TOL1 and TOL2 are taken to be 
0.1 and 0.01 respectively. 

Figure 2 displays a comparison of the progress of the freezing front between the computed 
results and the analytical solution13. As the slab involved is finite, comparison with the solution 
of a theoretical infinite slab must be terminated when the temperature begins to change 
appreciably at boundary DC. It can be seen from this figure that the computed results approach 
the exact solution with the refinement of space and time steps and the result using 80 elements 
with a time step of 10 seconds is in good agreement with the analytical solution. 

Freezing of a corner region 
The liquid in an internal corner region is initially at a uniform temperature with the surface 

of the wedge maintained at a uniform temperature, — 1.0°C, lower than the fusion temperature 
(0°C). The relevent thermal properties are ks = kI= 1 W/m·K, cs = ct = 1.0 J/kg·K, 
p = 1 kg/m3. In one case the initial temperature is Ti = 0°C and the latent heat ). = 1.5613 J/kg; 
in the other Ti = 0.3°C and λ = 0.25 J/kg. 

The finite element mesh is shown in Figure 3. Figure 4 shows the comparison of the present 
finite element results with the analytical solution14 of the freezing front history. There is very 
good agreement between the computed results and the analytical solutions. 
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Computational efficiency tests 
The geometry of the phase change material (PCM) is a slice with a radius of 5 cm as shown 

in Figure 5. The PCM is initially at a uniform temperature of 20°C with side AB and AC insulated. 
On the circumferential side, BC, there is heat convection with the heat transfer coefficient varying 
linearly, from 17.5 to 87.5 W/m2·°C, from point B to C. The ambient temperature is -23.6°C. 
The thermophysical parameters are as follows: 

ks = 1.55 W/m·K, kl=0.5 W/m·K, cs = 1240 J/kg·K, ct = 2370 J/kg·K, 
p = 960 kg/m3, λ = 167400 J/kg, Tm = - 1.8°C. 
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Computations were carried out using 300 elements and 331 nodes with a time step of 10 
seconds (case 1) and 675 elements and 721 nodes with a time step of 5 seconds (case 2). The 
finite element meshes are illustrated in Figure 5 (a and b). For comparison, both symmetrized 
and unsymmetrized global matrices with both stabilized one-point and four-point quadrature 
are tested for each case. All the computations were carried out with a Packard Bell 486 Personal 
Computer. 

Figure 6 displays the comparison of the temperature histories of points A, E and F between 
the two cases. The solid lines are for case 1 (300 elements) and the dashed lines for case 2 (675 
elements). It can be seen that there is little difference between the results of using 300 elements 
with a time step of 10 seconds and 675 elements with a time step of 5 seconds. 

The execution time, memory requirement, as well as averaged iteration number in each time 
step for the two cases are listed in Table 1. 
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Table 1 Comparison of computing time and memory requirement 

Unsymmetric 
matrix 
Symmetric 
matrix 

Unsymmetric 
matrix 
Symmetric 
matrix 

Iterations 
per 
time 
step 

Execution 
time 

Time 
saved 

Memory 
required 
in words 

Case 1: Elements = 300, Nodes = 331, ∆t = 10 s, time step number = 1020 

4-point 
1-point 
4-point 
1-point 

3.04 
3.04 
3.94 
3.94 

2368 
1118 
2788 
1170 

52.8% 

58.0% 

24999 
24990 
18424 
18415 

Case 2: Elements = 675, Nodes = 721, ∆t = 5 s, time step number = 2040 

4-point 
1-point 
4-point 
1-point 

3.13 
3.12 
4.04 
4.04 

13616 
7907 

14396 
7120 

41.9% 

50.5% 

60788 
60779 
39836 
39854 

Memory 
saved 

26.3% 
Based on 
1-point 
quadrature 

34.4% 
Based on 
1-point 
quadrature 

From this table it can be seen that in case 1 the stabilized one-point quadrature algorithm 
has the same convergence speed as four-point quadrature and saves 52.8% and 58.0% execution 
time, respectively, for both unsymmetrized and symmetrized global matrices. For case 2, the 
stabilized one-point quadrature algorithm saves 41.9% and 50.5% for unsymmetrized and 
symmetrized global matrix, respectively. 

Using the stabilized one-point quadrature algorithm, for case 1 the execution times are nearly 
the same for unsymmetrized and symmetrized cases, while the memory requirement is 24990 
single precision words for unsymmetrized case, but only 18415 single precision words for 
symmetrized case. The saving of memory requirement is 26.3% using the symmetrized global 
matrix. For case 2, using symmetrized global matrix, the saving of memory requirement is 34.4%; 
and there is a 9.95% saving of execution time although the iteration number in each time step is' 
increased due to the treatment of symmetrization. It is clear that the more the nodes of the 
problem, the more the saving of memory requirement using symmetrized global matrix since 
only the upper triangle of the global matrix needs storage elements after symmetrization. 
Numerical experiments proved that although the convergence speed is slowed down due to the 
treatment of symmetrization, the savings in execution time increase with the increase of total 
node number using symmetrized global matrix. This is due to the fact that the higher the node 
number, the bigger the ratio of the computational work required in equation solving to total 
computational work. 

Numerical experiments also proved that the difference of the results between one-point 
and four-point quadrature algorithm were only observed in decimal places of the temperature 
values. 

It should be noted that the zigzag shapes in the temperature history curves in Figure 6 are 
caused by the enthalpy model itself and is a drawback of the enthalpy model used. This drawback 
can partly be eliminated by refinement of the computational mesh. 

CONCLUSIONS 

The finite element method was used for the solution of the enthalpy model for phase change 
heat transfer by conduction. An efficient simultaneous iteration procedure was developed for 
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the final discrete algebraic equation system. A one-point quadrature integration scheme was 
incorporated into this procedure, leading to a significant saving in the computing time. Numerical 
examples have demonstrated the accuracy and efficiency obtainable with this new procedure. 
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